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Abstract

This study introduces a novel algorithm for estimating the lagged covariance matrix of

high-dimensional time-series data, applying principles from research on optimal cleaning

for singular values of cross-covariance matrices [1] to the domain of lagged covariances.

This approach is tested on Random Gaussian and AR(1) models, measuring its efficacy

by comparing cleaned outputs with theoretical true outputs derived from autocovariance

formulas.

The algorithm significantly improved the estimation of singular values for large-

dimensional data. In the Random Gaussian model, it effectively removed noise, result-

ing in negligible error. In the AR(1) model, it maintained the signal-to-noise ratio while

effectively reducing noise.

Its successful application to multiple models highlights the algorithm’s versatility, making

it a valuable tool for precise covariance matrix estimations across various fields, including

finance and signal processing.
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Chapter 1

Introduction and Context

1.1 Introduction

High-dimensional statistical analysis has become increasingly relevant with the arrival of

large-scale datasets. Traditional methods for estimating covariance matrices are less effec-

tive due to the curse of dimensionality [2], where empirical estimates lose their reliability as

dimensions increase. Specifically, the eigenvalues of empirical covariance matrices in high

dimensions tend to spread out over an interval, as predicted by the Marchenko-Pastur law

[3], which can obscure the true underlying relationships between variables.

One promising approach to mitigate these issues is cleaning singular values in covariance

matrices [4, 5]. This technique has proven effective for cross-covariance matrices [1], pro-

viding more accurate and stable estimates by adjusting singular values to counteract the

effects of random noise.

Building on this groundwork, this paper proposes an optimised method for cleaning singu-

lar values specifically in lagged covariance matrices. These matrices are crucial for under-

standing the temporal dynamics in time series data, allowing us to capture time-dependent

relationships that are otherwise lost in static analyses.

The need for this research is clear when considering its broad applicability. From finan-

cial markets [6, 7, 8], where accurate models of time series data can inform investment

strategies, to climatology [9, 10], where lagged relationships are key to predicting weather

patterns, the implications are vast [11]. This work aims to provide a robust statistical tool

that enhances our capacity to make informed decisions based on time series analyses.
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1.2 Context

1.2.1 Autoregressive Models

Autoregressive (AR) models are a class of linear models where the future points in a time

series are predicted using a linear combination of past observations. This method of fore-

casting, where the variable of interest is regressed against its own previous values, is known

as autoregression [12]. The self-referential nature of these models makes them especially

effective for analysing and predicting time series data.

The simplest autoregressive model is the AR(0), which assumes that observations are inde-

pendent and identically distributed (i.i.d.). This model is the same as a random Gaussian

white noise process [13], where each value in the series is random and uncorrelated with

past values:

Xt = εt , (1.1)

where εt is white noise with a mean of zero and a constant variance.

The AR(1) model extends this by introducing a dependency on the immediate previous

value, encapsulating a memory of one time step [12]:

Xt = φ1Xt−1 + εt , (1.2)

where φ1 is the coefficient that measures the impact of the immediate past value on the

current value.

Generalising further, the AR(p) model incorporates dependencies up to p time steps back,

providing a richer representation of time series dynamics [12]:

Xt = φ1Xt−1 +φ2Xt−2 + · · ·+φpXt−p + εt . (1.3)

In this equation, φ1,φ2, . . . ,φp are parameters quantifying the influence of past p observa-

tions on the current value.
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These models are foundational in time-series analysis and particularly valuable for their

ability to capture and utilise serial dependencies, characterising many temporal pro-

cesses.

1.2.2 Stationarity

Stationarity refers to a condition where the statistical properties of the series—such as

mean, variance, and autocorrelation—do not depend on the time at which the series is ob-

served [14]. This trait is essential because tools like the autocovariance (Section 1.2.3) and

Marchenko-Pastur law (Section 1.2.6), assume or require stationarity to function correctly.

Without stationarity, trends and seasonal patterns can distort these statistical properties,

leading to misleading results and interpretations [15].

This study utilises stationary autoregressive models due to their inherent ability to maintain

consistent statistical properties across time:

1. AR(0): Inherently stationary as it consists of i.i.d. random variables.

2. AR(1): Stationary provided that |φ |< 1, preventing the series from exhibiting explo-

sive behaviour which could vary mean and variance unpredictably [12].

3. AR(p): Stationary when all roots of its characteristic polynomial lie outside the unit

circle such that the model’s parameters φ1,φ2, . . . ,φp stabilise the process [16].

To check if a time series is stationary, analyse summary statistics or perform statistical tests

like the Augmented Dickey-Fuller test [15].

On the other hand, non-stationary time series require transformation to meet the stationarity

conditions for analysis. Techniques employed to make them stationary include:

1. Differencing: This involves subtracting an observation from its predecessor, typi-

cally used as a component to remove trends or seasonality [14].

2. Detrending: This involves fitting a linear model to remove a trend from the data,

leaving the residuals to analyse [17].

3. Deseasonalising: This technique adjusts for seasonal variations by model fitting or

differencing, allowing for a more stable analysis of the underlying patterns [18].
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Implementing a combination of these preprocessing steps ensures that the assumptions of

many time series models are met, enabling more accurate and reliable analysis.

1.2.3 Autocovariance

Autocovariance measures the linear dependency of a time series with itself at different

points in time, separated by a lag τ . It is an essential tool for determining the time-dependent

structure within a series, crucial for models like AR where the influence of past values dic-

tates current behaviour. Mathematically, the autocovariance for a stationary time series Xt

at lag τ is defined as [19]:

γ(τ) = E[(Xt −µ)(Xt−τ −µ)] (1.4)

This expression, E represents the expected value operator. For stationary processes, such

as AR(0) and AR(1) with |φ | < 1, the mean µ is invariant over time. Simplifying the

autocovariance function to be equivalently expressed as:

γ(τ) = E[XtXt−τ ]−µ
2 (1.5)

A pronounced autocovariance at a specific lag indicates a significant relationship between

values separated by that time interval. In Chapter 2, new forms of autocovariance functions

for AR(0) and AR(1) models will be examined.

1.2.4 Cross-Covariance Matrix

Cross-covariance matrices are crucial in assessing the relationship between two time-

dependent random variables. For a series of observations over time indexed by t = 1, . . . ,T ,

the empirical cross-covariance matrix CXY between the vectors Xt ∈ Rn and Yt ∈ Rp is

calculated as follows [19]:

CXY =
1
T

T

∑
t=1

(Xt −X)(Y′
t −Y) where Y′

t = transpose of Yt (1.6)

where X and Y are the means of X and Y respectively.
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The primary use of a cross-covariance matrix is quantifying how changes in variables of

one vector (like X) are associated with changes in variables of another vector (like Y).

For example, consider two vectors where X represents n distinct features in the USD/EUR

exchange rate, and Y represents p distinct features in the USD/GBP exchange rate over the

same period. These features could contain various market indicators, like the daily exchange

rate, opening price, and trading volume. The cross-covariance matrix computed between X

and Y would provide insight into the interdependencies between these features.

For datasets with a large number of variables (n and p), cross-covariance matrices become

essential tools for understanding the inter-variable relationships at a granular, quantifiable

level. They help identify patterns and dependencies that might not be evident through sim-

pler analyses.

1.2.5 Lagged Covariance Matrix

Lagged covariance matrices extend the concept of cross-covariance to include temporal

dynamics, crucial for capturing how past values influence future observations in time se-

ries data. Unlike cross-covariance matrices that measure simultaneous interactions between

different datasets, lagged covariance measures how past values of a series influence its fu-

ture values. The empirical method of calculating lagged covariance between a time series

Xt ∈ Rn and its own past values Xt−τ ∈ Rn over time t = 1, . . . ,T is defined as:

CXτ =
1

T − τ

T−τ

∑
t=1

(Xt −X)(Xt−τ −X)′ (1.7)

Here, Xt−τ represents the state of the time series τ periods in the past, highlighting the

delayed effects within the series.

These matrices are fundamental for understanding temporal patterns like cycles, trends and

seasonality and can significantly enhance predictive accuracy. By calculating the lagged

covariance for different values of τ , analysts can understand how much historical data can

inform future expectations and identify the optimal lags to be included in predictive mod-

els.
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1.2.6 Marchenko-Pastur Law

The Marchenko-Pastur Law predicts the distribution of eigenvalues for large sample co-

variance matrices when the number of variables n and the number of observations T are

both large. When the parameter n/T , termed the aspect ratio, approaches a finite limit, the

eigenvalues spread out over a region instead of clustering at the true eigenvalue.

For example, consider the empirical covariance matrix derived from a sample of T inde-

pendent observations of an n-dimensional Gaussian signal, where the true underlying co-

variance is the identity matrix In. In low-dimensional settings, where T >> n, the singular

values of the empirical covariance matrix tend to cluster around the value of 1, reflecting

the true covariance structure accurately. However, as the dimensionality n increases and be-

comes similar to the number of observations T , the behaviour of the singular values diverges

significantly from this ideal scenario. Instead of clustering around 1, the singular values

spread out and follow a distinct distribution known as the Marchenko-Pastur law.

The aspect ratio n/T serves as a crucial element in determining the spread of eigenvalues

as described by the Marchenko-Pastur Law. An aspect ratio close to zero suggests that the

number of observations far exceeds the number of variables, leading to a tight clustering

of eigenvalues. Conversely, an aspect ratio approaching or exceeding one indicates that

the dimensions are on par with the number of observations, leading to the aforementioned

spread and necessitating techniques such as singular value cleaning to mitigate its effects

on covariance estimation [3].

1.2.7 Singular Values and Singular-Value-Decomposition (SVD)

Singular Value Decomposition (SVD) is a fundamental matrix factorisation technique used

in many areas of statistics and machine learning for dimensional reduction and data simpli-

fication. SVD decomposes a matrix A into three other matrices [20]:

A =UΣV ∗, (1.8)

where U and V are orthogonal matrices representing the left and right singular vectors of

A, and Σ is a diagonal matrix containing the singular values of A. Singular values in Σ

quantify the contribution of each corresponding singular vector to the overall structure of

the data.
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In the context of covariance matrix analysis, especially for lagged covariance matrices,

SVD plays a crucial role. It helps identify and retain significant patterns in the data while

reducing noise. Adjusting the singular values during the cleaning process, as in the tech-

nique proposed in this paper, optimises the representation of these patterns, ensuring that

the essential temporal dynamics are preserved while minimising the influence of noise and

redundancies [1].

This enhanced representation through SVD is pivotal for applications that rely on accurate

covariance estimations, such as predictive modelling and time series forecasting in high-

dimensional spaces.

1.3 Literature Review

1.3.1 Benaych-Georges et al. Paper

The pioneering work by Benaych-Georges et al. [1] introduced an optimal cleaning tech-

nique for the singular values of cross-covariance matrices, providing a robust framework

for handling high dimensional datasets. This paper introduces a new algorithm that cleans

singular values of cross-covariance optimally for the Frobenius norm among RIEs. The

method effectively approximates the oracle functions from its data, outperforming tradi-

tional estimators in high-dimensional, complex scenarios.

1.3.2 Oracle Function and Oracle Estimators

Oracle functions [1] represent idealised functions that provide the best possible outcomes,

assuming complete knowledge of the underlying processes. These functions often remain

theoretical, as they depend on unknown parameters, making them impractical for direct

use.

Conversely, oracle estimators [5] are practical implementations designed to approximate

the performance of oracle functions. They leverage estimable data quantities to simulate

the decision-making of an oracle function, providing researchers with a robust framework

for handling complex datasets.

Additionally, oracle functions can be used as benchmarks in statistical analysis, allowing

researchers to measure the efficacy of practical estimators against theoretical results. This

evaluation involves models specifically designed to access oracle functions, providing an

idealised baseline to compare with empirical outcomes.
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1.3.3 Isotropic Vectors

Before discussing Rotationally Invariant Estimators (RIEs), it’s crucial to understand the

concept of isotropic vectors. In the context of covariance matrix estimation, isotropic vec-

tors refer to vectors whose distribution is uniform and symmetric across all directions in

space. This isotropy means that the properties of these vectors remain unchanged regard-

less of the dataset’s rotation or transformation. Such a characteristic is vital for RIEs, as

these estimators rely on the assumption that the principal directions (singular vectors) of

the data should not influence the estimation process, thus ensuring a fair and unbiased rep-

resentation of the dataset’s intrinsic characteristics.

1.3.4 Rotationally Invariant Estimators

Enhancing covariance matrix estimation in high-dimensional data often requires techniques

beyond traditional approaches, due to the unique challenges posed by large datasets. Nowa-

days, there are several methods used to improve estimation accuracy:

• Regularization adapts to structured covariance matrices, integrating assumed prior

structural knowledge into the estimation process. Band matrix techniques are dis-

cussed in [21, 22], while hard thresholding is explored in [10].

• Shrinkage combines empirical covariance estimates with a structured prior (e.g. a

scaled identity matrix), adjusting overestimations and underestimations towards a

more reliable middle ground. This method enhances stability and accuracy by bal-

ancing raw data with predefined assumptions [23, 24, 25].

• Clipping adjusts all but the largest eigenvalues to a constant value to preserve certain

matrix properties, such as the trace.

• Cleaning optimises singular values to align the estimated matrix more closely with

the true underlying matrix—this is our main focus in this paper.

Among these, Rotationally Invariant Estimator (RIE) cleaning is notable for preserving the

singular vectors while adjusting singular values. This preservation is essential in high-

dimensional statistics to ensure directional data remains unaltered while enhancing the clar-

ity of dimensional reduction.

It works by ensuring estimators are invariant under orthogonal transformations, thus pre-
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serving the isotropic nature of singular vectors (unlike regularization). This isotropic prop-

erty makes RIEs ideal for unbiased data representation, particularly in SVD, it is said to en-

hance the signal-to-noise ratio, ensuring a clearer depiction of principal components.

Overall, RIEs play a crucial role in balancing the preservation of geometric data structure

with statistical accuracy, particularly beneficial in complex analytical scenarios where un-

derlying data structures are key but may be obscured by noise or dimensionality.

1.3.5 Transition to Lagged Covariance Matrix

This study builds upon the foundational insights provided by Benaych-Georges et al.

(2019), investigating lagged covariance matrices instead of cross-covariance matrices. In

the context of lagged covariance matrices, the relationship between a time series is denoted

as Xt and its lagged version Xt−τ . This is conceptually similar to cross-covariance matri-

ces, where CXY captures the relationship between different sets of data; however, for lagged

covariance, Yt is effectively Xt−τ .

The similarity between cross-covariance and lagged covariance matrices lays the ground-

work for extending optimal cleaning techniques, initially developed for the former, to the

realm of the latter. This extension is grounded in the mathematical principles common

to both cross-covariance and lagged covariance matrices. By applying established optimal

cleaning techniques, originally designed for cross-covariance matrices, to lagged covariance

matrices, with the aim to significantly improve the estimation accuracy of these matrices in

high-dimensional time-series data.

1.3.6 Impact of Lags on Dimensionality

To understand the impact of lags on the dimensionality of covariance matrices in time series

analysis, consider a basic scenario with n variables without any lags. In this instance, the

covariance matrix dimensions are n× n, reflecting the pairwise covariances between each

pair of variables at the same time point, also known as autocovariance.

Then, introduce L lags for each variable, which effectively augment each variable to be rep-

resented by L+ 1 distinct data points—the original variable plus L lagged versions. This

results in a more comprehensive and granular covariance matrix that captures the tempo-

ral dynamics. The dimensions of this lagged covariance matrix are n(L+1)×n(L+1)

instead.
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Therefore, as the number of lags increases, the increase in dimensionality grows linearly

per variable but results in a quadratic increase in the matrix’s overall size.

1.4 Thesis Contribution
This thesis contributes to the field by developing, validating, and evaluating an optimised

method for cleaning singular values of lagged covariance matrices. The approach leverages

RIEs, a breakthrough discovery in matrix analysis, to enhance the robustness and accuracy

of time-series data analysis. The focus on lagged covariance matrices addresses a critical

gap in understanding temporal dynamics, particularly in financial time series, where lagged

relationships can signify predictive patterns. By improving the estimation of these matrices,

the research aims to provide more reliable tools for forecasting and understanding dynamic

systems.



Chapter 2

Methodology

2.1 Model Analysis

This section analyses the subtle differences in algorithm 1 in [1] that arise when transi-

tioning to lagged covariance matrices. This will result in a modified algorithm tailored for

singular value cleaning of the lagged covariance matrix.

Differences

1. Instead of random vectors (X ,Y ) ∈ Rn ×Rp, they are instead (Xt ,Xt−τ) ∈ Rn ×Rn

where τ is the lag.

2. The b[n+1:p] term [1] is always omitted as both singular vectors have the same di-

mension, which means p = n so b[n+1:p] = b[n+1:n] = 0. Therefore, Equation 2.4 is

simplified from:

1
T
(

n

∑
ℓ=1

bℓ
z2 − s2

ℓ

+ z−2b[n+1:p]) to
1
T
(

n

∑
ℓ=1

bℓ
z2 − s2

ℓ

)

as the b[n+1:p] term is omitted.

3. Apply isotonic regression only when modelling dependent variables with a non-

decreasing relationship with the independent variables. In the lagged case, an ex-

ample would be modelling cumulative metrics over time where later time points are

not expected to have lower values than earlier ones.
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2.2 Algorithm

The algorithm for optimally cleaning lagged covariance matrices aims to adjust the singular

values obtained from the SVD of the lagged covariance matrix CXt−τ X . The process ensures

that the cleaned singular values better represent the true underlying structure of the time

series data.

Summary: RIE Cleaning for Singular Values of Lagged Covariance Matrices

Input: X ∈ Rn×T , lag τ .

Output: RIE cleaned singular values s1,cleaned, . . . ,sn,cleaned.

1: Compute CXt−τ X = 1
T Xt−τX ′, CX = 1

T XX ′, CXt−τ
= 1

T Xt−τX ′
t−τ

2: Compute the SVD (see Equation 1.8) of CXt−τ X

3: Compute the vectors (aℓ)ℓ=1,...,n and (bℓ)ℓ=1,...,n:

aℓ = u′ℓCX uℓ, bℓ = v′ℓCXt−τ
vℓ (2.1)

where uℓ and vℓ are the left and right singular vectors of CXτ X respectively.

4: For each k ∈ {1, . . . ,n}:

• Set z = sk + i(npT )−1/12 for sk the k-th singular value of CXt−τ X .

• Compute H,A,B:

H(z) =
1
T

n

∑
ℓ=1

s2
ℓ

z2 − s2
ℓ

(2.2)

A(z) =
1
T

n

∑
ℓ=1

aℓ
z2 − s2

ℓ

(2.3)

B(z) =
1
T

n

∑
ℓ=1

bℓ
z2 − s2

ℓ

(2.4)

• Compute Θ = z2AB
1+H and L = 1− 1

1+H−Θ

• Compute sk,cleaned, algo = sk ×
(

max{0, ℑ(L)
ℑ(H)}

)
5: Optionally, apply the isotonic regression algorithm to the sk,cleaned, algo.

Then, the following sections will be the models used to generate time series data to validate

the efficacy of our algorithm.



2.3. Random Gaussian Model or AR(0) 20

2.3 Random Gaussian Model or AR(0)

2.3.1 Purpose

The random Gaussian (RG) model, also referred to as AR(0), where Xt = εt (see Equa-

tion 1.1), serves as a fundamental baseline for comparative analysis. The model serves two

purposes in our analysis.

Firstly, it acts as a validation tool, providing a scenario with no autocorrelation, allowing for

a clear assessment of the cleaning method’s effectiveness. Secondly, it sets a benchmark for

evaluating the cleaning process’s performance against more complex autoregressive struc-

tures that exhibit inherent autocorrelation. Moreover, its true lagged covariance is easy to

calculate to compare with empirical and cleaned methods.

2.3.2 Process

Five multivariate RG time series will be generated with parameters varying by dimensions n

and keeping the total time steps T constant, lagged by τ time steps. Their lagged covariance

matrix will be calculated using Equation 1.7, it will also be cleaned using Algorithm 1, and

both empirical and cleaned matrices will be compared to the true matrix. The following

table summarises the parameters used in the analysis:

n T (Total Time Steps) τ (Lag) Q = T/n (Ratio)
250 2,500 1 10
500 2,500 1 5

1,250 2,500 1 2
2,500 2,500 1 1

Table 2.1: Parameters used in the generation of Gaussian time series

Then, the time series will be generated, and the empirical and true covariance matrix will

be calculated:

For each row of parameters:

1. Generate an n-dimensional time series representing a white noise process:

X = np.matrix(np.random.randn(n, T))
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2. Create a lagged series Xt−τ , where τ = 1, and match the dimensions of the original

matrix by slicing the matrix X :

XT = X[:, 1:]

XT_L1 = X[:, :-1]

3. Stack the original and lagged matrices to form a combined matrix Z:

Z =

 XT

XT L1

 ,

Z = np.vstack((XT, XT_L1))

4. Apply mean centering to Z by subtracting the mean of each row from itself:

Z = Z - np.mean(Z, axis=1)

5. Calculate the empirical lagged covariance matrix of Z:

Z =

 CXt Xt CXt−τ Xt

CXt Xt−τ
CXt−τ Xt−τ



lagged_cov_matrix = (Z @ Z.T) / (T - 1)

6. Return the true singular values which is an n-dimensional vector of zeros and the

empirical lagged covariance matrix:

return ([0] * n, lagged_cov_matrix)

7. Proceed to the main algorithm in Section 2.2 and split the block matrix

lagged cov matrix into its submatrices and clean the singular values.

8. Analyse the results, which will be elaborated in Section 2.3.3 and Chapter 3.
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2.3.3 Expected Results

The anticipated outcomes for this model analysis involve two categories of submatrices

within the lagged covariance matrix derived from the stacked matrix Z.

1. The top-left and bottom-right submatrices, CXt Xt and CXt−τ Xt−τ
, are expected to be

diagonal matrices with ones along the diagonal, reflecting the unit variance of the

Gaussian process. The zeros off-diagonal indicate no autocorrelation within each

independent time series. This setup validates the lack of internal correlation in a RG

or AR(0) process.

2. The top-right and bottom-left submatrices, CXt−τ Xt and CXt Xt−τ
, should ideally be zero

matrices, showing no correlation between the current values Xt and its lagged version

Xt−τ . Empirically, as the dimension n increases, the noise levels in these matrices may

also increase due to the higher dimensionality (see Section 1.2.6). After applying the

cleaning, it is expected to see a less noisy version of the empirical matrix.

The fact that the autocovariance function for a white noise process is [26, 27]:

γ(τ) = E[XtXt−τ ] = σ
2
δτ,0 ≡


σ2 for τ = 0

0 for τ > 0
(2.5)

further supports the expected outcome of the two types of submatrices.

The effectiveness of this model should be the most noticeable because there are no inherent

signals or correlations by design. Thus, any significant reduction in noise or improvement

in the clarity of the empirical matrices can be attributed directly to the method’s efficacy.

Furthermore, the model ensures that the cleaning process does not introduce any unwar-

ranted signals, which is vital for applications involving more complex time series datasets

where maintaining data integrity is crucial.
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2.4 AR(1) Model

2.4.1 Purpose

The AR(1) model (see Equation 1.2), plays a critical role in advancing our understanding of

cleaning lagged covariance matrices from autoregressive processes within time series. This

model introduces a simple yet significant autocorrelation structure, where each value in the

series is linearly dependent on its immediate predecessor, accompanied by a Gaussian noise

component εt .

Validation of Cleaning Methods The AR(1) model serves as an essential tool for validat-

ing the effectiveness of our proposed cleaning methods under the simplest conditions of

inherent temporal correlation. Unlike the AR(0) model, which provides a baseline with no

autocorrelation, the AR(1) model allows us to test the robustness of our cleaning techniques

in the presence of known, systematic correlations. This is pivotal for ensuring the cleaning

process accurately preserves meaningful temporal dynamics while reducing noise.

Benchmark for Complex Models Furthermore, the AR(1) model sets a foundational

benchmark for comparing the performance of our cleaning algorithm against more complex

autoregressive models. Starting with this first-order correlation allows for methodically as-

sessing how well the cleaning process manages to extract and clarify the true signal from

the noise, which is crucial for models where higher-order lags and more intricate dynamics

are considered, like VAR and AR(p) models, and real-world data.

Parameterisation and Comparative Analysis Use the parameters outlined in Table 2.1 to

compare the empirical and cleaned matrices with the true matrix. The difference is that the

true matrix is not as simple as a zero matrix—the method for calculating the true matrix is

outlined in this paragraph in Section 2.4.2.

2.4.2 Process

Our first step is generating n number of random φ values, where each φ represents the au-

toregressive coefficient for an individual AR(1) process within our model. This coefficient

is crucial as it determines the degree of influence that the previous time point’s value will

have on the current value in the time series. Outlined below is the process of generating the

time series and calculating the empirical and true covariance matrices:

For each row of parameters in Table 2.1:

1. Initialise two empty matrices to hold the original and lagged time series data:
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XT_matrix = np.zeros((n, T - 1))

XT_L1_matrix = np.zeros((n, T - 1))

2. Generate the AR(1) process coefficients φ , note that |φ |< 1 ensures stationarity (Sec-

tion 1.2.2):

phi_values = np.random.uniform(0.0, 0.9, size=n)

3. Generate the true singular values:

sigma_epsilon_squared = 1

true_s = [(phi * sigma_epsilon_squared) / (1 - phiˆ2)

for phi in phi_values]

4. For each variable i, simulate an AR(1) process and store the original and lagged series:

for i, phi in enumerate(phi_values):

ar1 = np.array([1, -phi])

ma1 = np.array([1])

AR_object = ArmaProcess(ar1, ma1)

X = AR_object.generate_sample(nsample=T)

XT_matrix[i, :] = X[1:]

XT_L1_matrix[i, :] = X[:-1]

5. Stack the original and lagged matrices to form the combined matrix Z:

Z = np.vstack([XT_matrix, XT_L1_matrix])

6. Apply mean centering to the combined matrix Z:

Z = Z - Z.mean(axis=1)[:, np.newaxis]

7. Calculate the empirical lagged covariance matrix from the combined matrix Z and

ensure it is in numpy.matrix type for the compatibility of the algorithm:

lagged_cov_matrix = np.asmatrix((Z @ Z.T) / (T - 1))
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8. Return the theoretical list of singular values derived from the autocovariance formula

and the empirical lagged covariance matrix:

return (true_s, lagged_cov_matrix)

9. Proceed to the main algorithm in Section 2.2 and split the block matrix

lagged cov matrix into its submatrices and clean the singular values.

10. Analyse the results, which will be elaborated in Section 2.4.3 and Chapter 3.

Theoretical True Matrix and Singular Values The autocovariance function for an AR(1)

model has a direct relationship with the parameter φ , proven here [28], the autocovariance

at lag τ is given by:

γ(τ) = σ
2
ε

φ |τ|

1−φ 2 for |φ | ≤ 1, (2.6)

where µ = 0 and φ is the autoregressive coefficient.

This function remains valid for negative lags (i.e. Xt−τ ), due to the symmetry of the co-

variance function γ(τ) = γ(−τ) in a stationary time series and X must be real [19, 27].

Therefore, it is important to note that Equation 2.6 uses the absolute value of τ to reflect

this symmetry explicitly.

This forms the basis for constructing the theoretical true lagged covariance matrix for n

independent AR(1) processes, denoted as Ctrue
Xt−τ Xt

, which is constructed by placing these

autocovariance values calculated for each φ value (see Equation 2.6) along the diagonal

elements of the matrix:

Ctrue
Xt−τ Xt

=


γ(τ)1 0 · · · 0

0 γ(τ)2 · · · 0
...

...
. . .

...

0 0 · · · γ(τ)n

 , (2.7)

where γ(τ)n = σ2
ε ·φn/(1−φ 2

n ).
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Given that the off-diagonal elements are zero, indicating no cross-correlations between dif-

ferent time series and the autocovariance values on the diagonal are positive because φ is

ensured to be positive by design. The singular values of Ctrue
Xt−τXt

are equivalent to its diago-

nal entries [20].

These true singular values can be used as a benchmark for evaluating empirical and cleaned

singular values derived from AR(1) models. When sorted from largest to smallest, these

true singular values serve as a prior for assessing the effectiveness of cleaning methods,

allowing for a clear comparison of performance.

To compare lagged covariance matrices, these three matrices will be used:

1. Theoretical True Matrix: Matrix 2.7.

2. Empirical Matrix: Derived from the empirical formula 1.7.

3. Cleaned Matrix: Reconstructed using the cleaned singular values, along with the

appropriate right singular vectors (U) and left singular vectors (V ).

This reconstruction allows comparison directly between the true, empirical, and cleaned

matrices.

This structured approach directly ties autocovariance to singular values in the true lagged

covariance matrix, which is crucial for validating singular value cleaning algorithms in time

series analysis. By establishing a clear and accurate benchmark for evaluating cleaning

methods, it becomes possible to effectively gauge their impact and determine their efficacy

in enhancing empirical data.

2.4.3 Expected Results

The primary expectation from applying the singular value cleaning to the AR(1) model is

an enhancement in signal clarity along the diagonal and noise reduction, particularly in the

off-diagonal elements of the lagged covariance matrices. These improvements are antici-

pated to align the cleaned matrices more closely with the theoretical true lagged covariance

matrix, which has autocovariance values precisely positioned on its diagonal and zeros else-

where.



2.4. AR(1) Model 27

Quantitatively, this enhancement should be evident through metrics such as the Frobenius

norm, which is expected to show a marked decrease between the empirical and cleaned

matrices compared to the theoretical values. This reduction indicates an effective noise

reduction, especially crucial as the dimensionality n of the model increases. Visual tools,

including heatmaps and singular value plots, will offer intuitive proof of reduced noise and

enhanced structural definition, affirming the method’s utility in improving the accuracy and

reliability of time-series analysis in high-dimensional settings.



Chapter 3

Results

3.1 Random Gaussian (RG) Model Results

n True vs Emp True vs Clean True vs Iso Clean
250 4.9677 0.0247 0.0146
500 10.030 0.1160 0.0890

1,250 24.985 0.1564 0.1063
2,500 50.004 0.3459 0.2231

Table 3.1: RG’s Table of Frobenius Norm Differences with T = 2,500

Figure 3.1: RG’s Frobenius Norm against Dimensions from n = 250 to n = 2,500

The data in Table 3.1 and Figure 3.1 show that, as the dimensionality n increases, the cleaned

matrices display progressively better noise suppression compared to the empirical matrices,

highlighting the effectiveness of the cleaning approach for high-dimensional data. The em-

pirical matrices exhibit a consistent increase in Frobenius norm, suggesting a linear rela-

tionship with n that is likely to persist as dimensionality further increases.
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3.1.1 Histogram Analysis

Figure 3.2: RG’s Histogram with n = 250 and T = 2,500 (Left to Right: Empirical, True, Cleaned)

Figure 3.3: RG’s Histogram with n = 1,250 and T = 2,500 (Left to Right: Empirical, True, Cleaned)

Figures 3.2 and 3.3 show the histograms of the matrix elements. The cleaning process

shrunk the values in the matrix into zeros, from what was a Gaussian distribution. This

aligns much more closely with the true matrix values, hence the low Frobenius norms in

Table 3.1.
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3.1.2 Matrix Heatmap Analysis

Figure 3.4: RG Heatmap with n = 1,250 and T = 2,500 (Left to Right: Empirical, True, Cleaned)

Figure 3.4 shows a heatmap for each method, representing a substantial decrease in noise

after cleaning the singular values and reconstructing the matrix, aligning more closely to

the true matrix.
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3.2 AR(1) Model Results

n True vs Emp True vs Clean True vs Iso Clean
250 12.561 11.683 11.676
500 23.594 20.624 20.613

1,250 62.527 48.241 48.130
2,500 124.504 85.751 85.306

Table 3.2: Frobenius Norm of the Differences for AR(1) Model with T = 2,500

Figure 3.5: AR(1) Model’s Frobenius Norm against Dimensions from n = 250 to n = 2,500

Table 3.2 and Figure 3.5 show consistently lower Frobenius norms for the cleaned matrices

than the empirical matrices. It also has a decreasing gradient, indicating that the cleaning

is more effective as the dimensions n increase. The empirical matrix continues to have a

constant, increasing gradient in its Frobenius norm.

3.2.1 Singular Values Line Graph Analysis

Figure 3.6: AR(1) Singular Values Line Graph
when n = 250

Figure 3.7: AR(1) Singular Values Line Graph
when n = 1,250

Figures 3.6 and 3.7 present line graphs comparing the singular values from empirical and

cleaned matrices against the true singular values for AR(1) models at dimensions n = 250
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and n = 1,250 respectively. The x-axis reflects the true singular values, creating a reference

line at y = x, indicated in red, which serves as a benchmark for comparison.

The black line (empirical) deviates from the red line more than the blue line (cleaned), and

this deviation increases at higher dimensionality n = 1,250. This closer adherence to the

true singular values by the cleaned data shows the effectiveness of the cleaning process,

particularly in higher-dimensional contexts.

3.2.2 Matrix Heatmaps and Difference Heatmaps

Figure 3.8: AR(1) Heatmap with n = 1,250 and T = 2,500 (Left to Right: Empirical, True, Cleaned)

The heatmaps in Figure 3.8 for an AR process with n = 1,250 reveal the characteristic

diagonal line across empirical, true, and cleaned matrices, signifying preserved structural

features corresponding to the theoretical model in Matrix 2.7. When zoomed in, the diago-

nal elements across methods show similar colours, implying similar values when referenced

against the colour bar. Most notably, the cleaned matrix exhibits marginally reduced noise

compared to the empirical matrix, which suggests improvements in noise reduction through

the cleaning process.
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Figure 3.9: AR(1) Heatmap Absolute Difference with n = 1,250 and T = 2,500
(True vs Empirical and True vs Cleaned)

Figure 3.9 displays heatmaps of the absolute differences between the true and empirical

matrices, and between the true and cleaned matrices, for the dimension n = 1,250. The

cleaned matrix shows subtly lower noise levels than the empirical one, as indicated by the

lighter shade in the overall matrix.

However, a diagonal line in the True vs Cleaned matrix suggests disparities in the signal’s

representation post-cleaning. The significance and implications of this discrepancy will be

further analysed and elaborated in Section 3.2.3.
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3.2.3 Investigating the Diagonal Values

n Empirical Diagonal Cleaned Diagonal
250 0.0564 0.1446
500 0.0535 0.2039

1,250 0.0596 0.2952
2,500 0.0580 0.3596

Table 3.3: Mean Absolute Error of Diagonal Elements for AR(1) Model with T = 2,500

Figure 3.10: AR(1) Diagonal Value Against Dimensions from n = 250 to n = 2,500

Upon examining the true, empirical, and cleaned matrices’ diagonal elements, Figure 3.10

shows an increased discrepancy in the cleaned matrix’s diagonal values compared to the em-

pirical matrix as the dimension n grows. This discrepancy, evidenced by the larger mean ab-

solute error in Table 3.3, is consistent with the visible diagonal line observed in the heatmap

of Figure 3.9, suggesting an alteration in the signal’s representation post-cleaning.

Figure 3.11: AR(1) Diagonal Values Line Graph
when n = 250

Figure 3.12: AR(1) Diagonal Values Line Graph
when n = 1,250
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The line graphs in Figures 3.11 and 3.12 further affirm this trend; while the cleaning process

reduces noise, it also appears to consistently underestimate the true matrix’s diagonal values

with increasing n. The observed pattern of underestimation of diagonal values in the cleaned

matrices, as dimensions increase, raises a critical point about the interpretation of ’optimal’

within the cleaning process, which is further analysed and elaborated in Chapter 4.

3.2.4 Signal-to-Noise Ratio (SNR)

n Empirical SNR Cleaned SNR Isotonic Cleaned SNR
250 1.4463 1.4530 1.4566
500 0.8277 0.8304 0.8315

1,250 0.2963 0.2911 0.2926
2,500 0.1494 0.1470 0.1490

Table 3.4: Signal-to-Noise Ratios for AR Models with varying dimensions n and fixed time T =
2500

Figure 3.13: AR(1) Signal-to-Noise Ratio Against Dimensions from n = 250 to n = 2,500

The table 3.4 and figure 3.13 display the signal-to-noise ratios (SNR) for AR models at

varying dimensions, calculated as follows [29]:

SNR =
σ2

signal

σ2
noise

(3.1)

• σ2
signal is the variance of the diagonal elements of the matrix, signifying the signal in

the AR(1) model.

• σ2
noise is the variance of the off-diagonal elements of the matrix, signifying the noise.
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The consistent SNR across different matrices indicates that the smaller signals remain dis-

tinct and discernable relative to the surrounding noise. This finding suggests that the clarity

of the signal remained similar relative to the noise, but it did not make it more clear.



Chapter 4

Discussion

4.1 RG Expected Results vs Actual Results

In the analysis of the RG model, the actual outcomes in Section 3.1 demonstrate a consistent

enhancement in matrix cleaning with increasing dimensionality, conforming to expectations

detailed in Section 2.3.3.

The observed improvements in the RG model primarily stem from the negligible impact of

singular vectors in matrices with no inherent signals. As dimensionality increases, the RIE

cleaning method effectively minimises the accompanying rise in noise by adjusting singu-

lar values without altering singular vectors. This results in a cleaned matrix that closely

mirrors the true matrix, particularly in high-dimensional settings where noise reduction is

essential.

Validated against a RG model with only white noise, the method’s efficacy highlights its

robustness in reducing noise. However, its performance in scenarios with actual signals

requires further exploration to fully understand its potential and limitations.

4.2 AR(1) Expected Results vs Actual Results

The AR(1) model presents a more nuanced scenario. Unlike the RG case, the AR(1) model

contains intrinsic temporal correlations, requiring a more careful cleaning process. Here is

a summary of the results in Section 3.2:
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Metric Implication
Frobenius Norm Improved performance in cleaned matrices
Singular Values Line Graph Improved singular values
Heatmaps Decreased noise, enhanced matrix clarity
Absolute Difference Heatmaps Signal potentially affected by cleaning
Diagonal Values Lower than expected, possible overcorrection
Signal-to-Noise Ratio Signals remain discernible among the reduced noise

Table 4.1: Summary of AR(1) Model Results and Implications

While the Benaych-Georges et al. paper [1] highlights the optimisation of the Frobenius

norm among RIEs, the application of this method reveals that achieving optimality in the

Frobenius norm does not guarantee a perfect replication of the true covariance matrix. This

distinction is crucial, particularly when considering the method’s practical implications in

fields requiring high fidelity in covariance matrix estimation.

The notion of ”optimality” within the framework established by Benaych-Georges et al. is

specific to the cleaning of singular values, with an explicit decision to preserve the empirical

singular vectors. Although the method effectively minimises the Frobenius norm distance

to the true covariance matrix, it acknowledges the inherent noise in the singular vectors by

not altering them. This approach ensures reduced noise in the matrix but does not eradicate

discrepancies arising from noisy singular vectors.

4.2.1 Implications for Matrix Reconstruction

Empirical Singular Vectors: The retention of noisy singular vectors while adjusting sin-

gular values implies that the cleaning process, although effective in reducing noise, does not

address inaccuracies in the vector components themselves. As a result, the cleaned matrix,

though less noisy, may not accurately mirror the true underlying covariance structure.

Limitations and Practical Application: This insight into the method’s optimality is vi-

tal for interpreting its effectiveness, particularly in applications like financial modeling or

signal processing, where precise matrix reconstruction is critical. The limitations high-

lighted by the analysis suggest that while the method is robust in scenarios with no inherent

signals, its effectiveness may diminish in more complex datasets where signal fidelity is

paramount.
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4.2.2 Examples of Practical Applications

The review by Bun et al. [8] illustrates the efficacy of RIEs in cleaning large covariance

matrices in real-world financial markets. These estimators adapt effectively without requir-

ing prior knowledge of signals because it cleans noise without altering the signals, proving

versatile across varied applications. Their empirically validated efficacy highlights RIEs as

robust tools for practical use in financial analysis and similar domains.

In contrast, others point out notable limitations within the framework. For instance, studies

such as Bongiorno et al. [30, 31, 32] highlight that Frobenius-optimised singular values

may not be ideally suited for portfolio optimisation. This is primarily because they do not

effectively filter out noise in the singular vectors nor address issues of non-stationarity. As

datasets grow increasingly complex, the challenges posed by noise in singular vectors and

non-stationary data become more pronounced. Consequently, exploring multiple method-

ologies to refine covariance matrix estimation becomes imperative when dealing with real-

world data.

The paper [33] underscores both the strengths and limitations of RIEs in practical applica-

tions. Hierarchical Clustering Estimators (HCEs) sometimes outperform RIEs when filter-

ing sample cross-covariance matrices under various loss functions (Stein’s loss and Kull-

back Leilbler divergence), indicating their efficacy in contexts where RIEs falter. Moreover,

the integration of HCEs with RIEs in a two-step estimation process can yield even better

results, optimising the balance between noise reduction and maintaining the signal of the

covariance matrix. This adaptability highlights RIEs’ utility and the benefit of combining

methodologies to enhance accuracy in complex statistical models, suggesting a more com-

plete approach to the application of these estimators, especially in finance and complex

systems analysis where precision is crucial.



Chapter 5

Conclusion

5.1 Conclusion of Results

The primary goal of this paper was to enhance the accuracy of covariance matrix estimation

in high-dimensional time series data using RIE cleaning techniques. The design achieved

the goal in the RG model and mostly achieved the goal in the AR(1) model with some

caveats. The approach denoised the matrix, but the signal’s strength was also decreased,

maintaining a similar signal-to-noise ratio.

A significant advancement made in this research was the adaptation of Random Matrix The-

ory to lagged covariance matrices, which introduced a nuanced approach to handle temporal

correlations. This innovation, along with the ability to compute the true lagged covariance

matrix for the AR(1) model, provided a robust framework for testing and validating the

effectiveness of our cleaning techniques.

The RIE technique’s versatility and efficacy in noise reduction were evident, yet this versa-

tility means it is optimised primarily for reducing noise, potentially at the expense of signal

strength. This highlights the need for developing methods that can improve signal strength

as well. Ideally, these methods could be combined with RIE to harness the best of each

algorithm, balancing noise reduction with signal enhancement.

A key limitation of this technique is its dependence on the assumption of stationarity in

time series data. This assumption often does not hold in complex, real-world settings,

particularly in financial markets where data elements frequently show non-stationary be-

haviour.
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In conclusion, the exploration of these results clarifies the strengths and limitations of the

RIE-based cleaning method. It shows that it is essential to apply the method judiciously,

ensuring that its use is tailored to the specific requirements of the analytical context since

it optimally addresses one part of improving matrix estimation—reducing the noise of co-

variance matrices in high-dimension.

5.2 Challenges

Undertaking this research presented several unique challenges, both technical and concep-

tual. Understanding the complex statistical terminology and methodologies used by CFM—

a research-focused French multinational company in quantitative asset management—was

initially daunting. The depth and breadth of their state-of-the-art scientific investment strate-

gies required a steep learning curve.

Moreover, the project reinforced a crucial lesson about the nature of data analysis: results

can often be misleading if not rigorously tested. For instance, there was an unnoticed bug

in my code when reconstructing the matrix, but due to the number of noise being much

greater than the number of signals, the results still displayed a significant improvement in

the Frobenius Norm despite the loss of signal. After detailed analysis and debugging, the

bug was fixed, but it resulted in lost time.

Additionally, the findings emphasised that different methods for computing errors can lead

to varying results, which accentuated the importance of testing thoroughly to gain the full

picture.

Random Matrix Theory was not a personal area of expertise, which added another layer

of complexity. Engaging deeply with this aspect of the study through research using text-

books and research papers was profoundly educational, significantly enhancing my analyt-

ical skills and understanding of this advanced field.

Each challenge encountered during this research was an opportunity for valuable learning

and experience in writing a paper, providing invaluable insights into the sophisticated world

of statistical analysis in high-dimensional data environments.
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5.3 Future Work
The promising results from this study open several avenues for further research to enhance

the algorithm’s effectiveness and applicability:

• Expansion to More Complex Models: Future work should incorporate more com-

plex time-series models such as AR(p) and VAR(1). These models introduce a greater

number of lags, significantly increasing the dimensionality of the data. Additionally,

exploring how autocovariance in VAR models relates to phi values will be more chal-

lenging and add depth to our understanding. Additionally, implementing spiked ma-

trix models [34] could also be beneficial, as these models are characterised by a few

large, isolated eigenvalues that stand out from the bulk of the eigenvalue spectrum,

leading to potential inconsistencies in top eigenvalue estimations.

• Exploration of Alternative Methods: It would be valuable to compare other meth-

ods like non-linear shrinkage [25] that aim to improve matrix estimation to see if they

yield similar enhancements. This comparison could help identify the most effective

techniques or combinations thereof for specific types of data and analysis scenarios.

• Application to Non-Stationary Data: Applying the RIE cleaning technique to non-

stationary time series data would test its robustness and effectiveness in more dynamic

and less predictable environments. This extension is crucial for fields such as financial

markets, where non-stationarity is a common characteristic of the data.

• Experiment with Different Loss Functions: Additionally, experimenting and opti-

mising with different loss functions, such as the Kullback-Leibler Divergence [35],

could provide insights into optimising the balance between noise reduction and signal

preservation.



Appendix A

Code

My GitHub Repository:

Personal GitHub Link

GitHub Repository and Function Names from Source [1]:

Source GitHub Link

def check_matrix(M, n, p): ...

def get_submatrices_of_lagged_cov_mat(n, p, CZZ): ...

def Coeffs(n, p, U, V, CXXemp, CYYemp): ...

def approx_L_or_imLoimH(z,

n,

p,

T,

Coeff_A=None,

Coeff_B=None,

https://github.com/FanCheong/RIE-Singular-Value-Cleaning-of-Lagged-Covariance-Matrices
https://github.com/CFMTech/Optimal_cleaning_for_singular_values_of_cross-covariance_matrices
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Coeff_B_n_to_p=None,

CXXemp=None,

CYYemp=None,

CXYemp=None,

U=None,

s=None,

stwo=None,

V=None,

algo_used=1,

return_L=False): ...

def RIE_Cross_Covariance(

CZZemp,

T,

n,

p,

Return_Sing_Values_only=False,

Return_Ancient_SV=False,

Return_New_SV=False,

Return_Sing_Vectors=False,

adjust=False,

return_all=False,

isotonic=False,

exponent_eta=0.5,

c_eta=1,

algo_used=1): ...



Appendix B

Colophon

This document was set in the Times Roman typeface using LATEX and BibTEX, composed

with an Overleaf text editor.
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